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Note 

Stability of the Explicit Finite 
Differenced Transport Equation * 

Recently Leonard [4] and, independently, Clancy [l] have presented necessary 
and sufficient conditions for the von Neumann stability of the explicit forward-time 
central-space (FTCS) one-dimensional transport equation in an infinite domain. Their 
results correct the work of Fromm [2] and Roache [5] which was only sufficient. It is 
the purpose of this note to show that the stability result obtained by Leonard and 
Clancy is also sufficient but not necessary in a finite computational domain. In doing 
so, we shall present the correct necessary and sufficient condition for the numerical 
solution of the transport equation. The result is given in a general form which 
includes different treatments of the convective term. The new result does not affect 
the stability region for grid Peclet numbers (Pe4) of approximately two or smaller, 
but enlarges the stability region for large Pe,. Although the enlargement is slight for 
the FTCS scheme, it is substantial for other schemes considered here. 

The one-dimensional transport equation under consideration is 

(1) 

and for definiteness we assume that u > 0; the case of u < 0 follows in an obvious 
fashion. The explicit finite difference equation which approximates (1) on a uniform 
grid is given by 

where Ty = T(xj, t,,), xi = jdx, t, = ndt, and 

c = uAt/Ax, r = aAt/Ax2, 

Tlj= Tj-1 - fZ(Tj-l - rj) - +J(7”2 - 2Tj-, + T,), 

Trj=Tj-$I(Tj-Tj+l)-+J(Tj-,-2Tj+Tj+l). 

(3) 

(4) 

The values of Z and J for different treatments of the convective term are given in 
Table I. As correctly pointed out by Leonard [3], T,j and Trj can be represented by a 
zeroth, linear, or quadratic upstream interpolation of T on the left and right faces of a 
control volume centered at j. The above interpolations give rise to the upwind, 
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TABLE I 

Necessary and Suffkient Stability Results for 
Different Approximations of Convective Term 

Convective 
scheme I J 

Stability condition 

Upwind 0 0 

Central 1 0 

QUICK 1 { 

HOS 1 1 

r< t(l/(l + $I%)), 

r<t, 

< C(B* ; 0, Pe,), 

r< f(l/(l +3X)), 

< w *; 4, Pe,), 

r< f(W + fPe,)), 

< CP*; 1, Pe,), 

0 < Pe, < co 

0 Q Pe, < 2, 

2 < Pe, < co 

O,<Pe,<f(l +fl), 

:(I + ~47) < Pe, < co 

O<Pe,<j(l +Jlo), 

;(I + Jlo) < Pe, < co 

centered, or quadratic upstream interpolation for convective kinematics (QUICK) [ 31 
treatment of the convective term. The higher order scheme (HOS) treatment is 
obtained by removing the central difference convective truncation error term 
&dx2(a3T/ax3) in going from (1) to (2). 

It can be shown following the method of Warming and Hyett [ 61 that the solution 
of (2) represents the solution of the following modified transport equation 

a2T 
-a- 

+ T.E., (5) 

where the truncation error is 

a2T 
T.E. = - +lu? - ax2 +a’Ax 

1-J 
c-- 

6 WI ax’ 
J 

a3T 

1 
2 

a/Ax’ r’ - i (1 - JPe;) 
I 

a4T -- ax4 + O(At’, Ax4), (6) 

where a’ = a(1 + i(l - I) Pe,), r’ = a’Af/Ax*, Pe; = uAx/a’, and Pe, = uAx/a is 
the grid Peclet number. Each treatment of the convective term gives rise to different 
truncation errors. The upwind scheme has the poorest accuracy, being only first-order 
accurate in space. All other schemes result in second-order accurate approximations 
to (5), even though the HOS approximation for the convective term is third-order 
accurate. Each of the above schemes also has its corresponding stability region. As 
noted by Leonard [3], the essence of a stable approximation for the convective term 
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must be such that its sensitivity to Tj is negative, i.e., Xj/aTj < 0, where Cj is the 
finite difference approximation to --u(aT/ax)l,. The sensitivity of the four schemes are 
-u/Ax for upwind (stable), zero for central (neutrally stable), -&/Ax for QUICK 
(stable, but less than upwind), and -ju/Ax for HOS (stable, but less than upwind 
and more than QUICK). This same order in the stability of the four schemes will be 
shown to remain valid in our final stability result. 

A standard von Neumann stability analysis studies the development of a Fourier 
component 

(7) 

where 19 = kdx. The complex amplification factor G = An+ ‘/An is obtained by 
substituting (7) into (2) to obtain 

G=l+2~‘(cos8-l)+(~J)c(4cosB-cos2~-3) 

- ic[sin 8 + (65)(2 sin 8 - sin 20)]. (8) 

Alternately, we could have written 

(9) 

where cr = a + ib is the growth rate. It can now be seen immediately that we can write 
G = [G/e’“, where 1 G ] = eaA ‘, and q4 = bdt. Thus we get 

~=(1/2At)ln{[l+2r’(COST- 1)+~~c(4c0se-c0s2e-3)]2 

+ c2 [sin e + $(2 sin 8 - sin 2e)12 }, (10) 

b=-Atan-’ 
I 

c[sin 0 + iJ(2 sin 8 - sin 2811 

! [I +2rycose- i)+~~c(4c0se-c0s28-3)] . (11) 

A stable numerical solution of (2) will generally contain errors in amplitude 
(dissipation) and phase (dispersion). Dissipation and dispersion errors can be 
analyzed by assuming the solution of (1) to be of the form eoteikx. Then it can be 
shown that the amplitude ratio and phase shift per time step are epre2 and -co, 
respectively. Consequently, the relative dissipation and dispersion per time increment 
are given by -uAt/r# and -bAt/cf?, respectively, i.e., the amplitude decays faster 
than the exact solution, and the wave speed is larger than that of the exact solution if 
the ratios are larger than unity; the opposite statement is true if they are less than 
unity. Since we are concerned in this paper about the stability of the schemes, we 
shall not elaborate further on the above errors. 

For stability, it is required that a < 0, or, equivalently, from (10) we get 

(12) 
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where 8* = @4x/l) 7c, 1 being the largest dimension in the computational domain, and 

C(& J, Pe;) = [( 1 - cos /3) - &J Pei(4 cos 8 - cos 219 - 3)] 

t {[(1-cos0)-&JPe~(4cosB-cos28-3)]2 

+fPe~*[sin0+$J(2sin8--sin20)]*). (13) 

Condition (12) is necessary and sufficient for (2) to be stable. Note that the 
smallest wavelength possible in a computation domain is 2dx, thus 0 = kAx = 
(242Ax) Ax = rr, and the largest wavelength possible equals 1, thus 0 = (2x//1) Ax = 
(2Ax/l) II = 8*. H ence 0 can range from 8* to 7~. We should comment here that the 
von Neumann stability analysis is only correct if the boundary conditions of (2) are 
periodic, and that is the reason why I is the largest wavelength that can be obtained 
in a computational domain. 

As shown in Fig. 1, the minimum of C(8; J, Pei) for all Pe, occurs either at 
8 = 8* or at 8 = 7~. Before discussing the results, we give some useful limits for 
expressions (12) and (13). 

(i) Pe; = 0: C(f?; J, 0) = l/(1 - cos f?), SO r’ < 4, 
(ii) Pei s 1: In this case we have that 

r’ < 4/Pe;*( 1 + cos e*), for J=O, 

< -1w(4 c~s e* - cos 2e* - 3)/ 

Pe: { [J(4 cos e* - cos 2e* - 3)12 (14) 
+ 36[sin 8* + iJ(2 sin 0* -sin 28*)]*}, for J > 0. 

(iii) 8 = e*:,rf < C(8*; J, Pei). 

(iv) 8= Z: r’ < f(l/(l + fJPeA>). 

The necessary and sufficient conditions for the four schemes, using the above limits, 
can now be clearly tabulated as in Table I. 

How do results (1.2) and (13) differ from that obtained by Leonard [ 3,4] for I = 1, 
J= 0, & and by Clancy [l] for I= 1, J= O? In general, the results differ when the 
stability is being controlled by f9= 8*. To see this, G can be plotted in the complex 
plane (for 0 < 8 < z), showing that the locus is a generalized semi-ellipse. In essence, 
the above authors have required that the curvature of G at (1,O) be greater than that 
of the unit circle, i.e., 8’ ]G]/M2/e=o < 0 (see [3,4]). This condition is equivalent to 
evaluating (13) at 8 = 0 (by using 1’Hospital’s rule twice), which is also equivalent to 
requiring that (2) be stable to inlinite wavelength disturbances. In an actual 
computation, this is not necessary since it is not possible to have I= co or Ax = 0, 
and hence the resulting restriction (for all cases except I = J = 0) of r’ < C(0; J, 
Pei) = 2/Pei is verly conservative for large Pe, . To illustrate this, in Fig. 2 we show 



STABILITY OF TRANSPORT EQUATION 

0.9 - 3 2 10 

0.8 - 

0.7 - 10 

0.6 - 

:.. 
“O,... !!?c, . . . . . . . ..i.... ::..I ..I (i,,.. .e* 

0.4 - 

0.3 - 

0.2 - 

0.1 - 

0.0 , , , , 
0 lv4 37v4 ll 

FIG. 1. Plots of C(B; Pe,) versus B for different Pe, ; 
HO.9 The grid PeclQ numbers are marked on the curves. 

(a) Upwind, (b) Central, (c) QUICK, (d) 

F = C(8*; J, Pe,)/C(O; J, Pe,) as a function of 8* for different Pe, and J, for I = 1. 
Here F is the time step factor that can be obtained over that given by Leonard for the 
FTCS and QUICK schemes, and by Clancy for the FTCS scheme. For FTCS with a 
realistic number of gridpoints, F remains close to one. For the other schemes, 
however, it increases with increasing J, and can be very large for large Pe,, thus also 
illustrating the advantage of using the QUICK or HOS formulation over central 
difference for the convective term in the equation. Note that for the upwind scheme 
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FIG. 2. Plot of the stability time step factor F= C(S*)/C(O) versus Pe, for Pe, > 2, and 
8* = (2dx/I) R, with I/Ax = 10,20; Upwind (---), Central (-), QUICK (---), HOS (-----). 

F= aPei/(l + $Pe,) is independent of 19*, and is included in Fig. 2 for completeness. 
Of course, F is largest for the upwind scheme, though this scheme may be less 
accurate since it introduces large artificial diffusion. Notice that for the FTCS 
scheme, F-+2/(1 + cos 0*) as Pa, + 03, while for the other schemes F - K(B*; J) X 
Pe, for large Pe,, where K is a constant (for upwind, K = f). A different way of 
looking at the results is to plot the stability region represented by r versus Pe,. This 
is illustrated for one value of 19* in Fig. 3. Here the actual gain in time step over that 
given by the FTCS scheme can be clearly observed. 

One important limit of the transport equation is that of Pe, + co (inviscid limit). 
In this case, the upwind scheme remains stable for Courant numbers c less than or 
equal to unity. For the FTCS scheme, we find that the limiting Courant number is 
zero, independent of 8”. This limit is nonzero, however, for the QUICK and HOS 
formulations for 8* greater than zero. The actual values of c can be obtained directly 
from (14ii) for J > 0. For example, for the QUICK scheme, c < 0.048, 0.012 for 
8* = 0.27~ and O.ln, respectively. For the HOS scheme, c < 0.062, 0.016 for 
8* = 0.271 and 0.1~ respectively. 

In conclusion, the correct necessary and sufficient condition for the discretized 
explicit transport equation on a uniform grid is given by (12) and (13). In addition, 
the advantage of using either the QUICK or HOS formulation over central difference 
for the convective term has been illustrated, while still retaining second-order 
accuracy. As a footnote, we point out that the given formulations (except upwind) 
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FIG. 3. Stability region for 0* = (2dxjl) R, with I/Ax = 20, represented by f versus Pe, ; Upwind 
(---), Central (-), QUICK (----), HOS (-----). 

may lead to stable oscillatory results for Pe, > 2, 2.56, 2.77, for the FTCS, QUICK, 
and HOS schemes, respectively. This oscillatory behavior is well known to be related 
to local nonresolution of the physics somewhere in the computational domain. In 
nonlinear equations, these oscillations can result in a divergence of the solution. This 
blow-up is distinct, however, and not addressed by the von Neumann analysis (which 
only holds for the linear constant coefficients equation with periodic boundary 
conditions), for which our result is strictly correct for any Pe, > 2. Finally, we note 
that numerical stability is usually thought to be determined by the smallest resolvable 
wavelength in the problem; this is apparently due to limiting computations to 
Pe; 5 2. It was shown, however, that stability can be extended by considering the 
long wavelength cutoff in the numerical solution. The reason for this effect is that the 
minimum time step stability restriction is controlled by the highest frequency present 
in the numerical solution. It is typical in a physical problem that the smallest 
wavelengths are the ones responsible for the highest frequencies. In a numerical 
solution, however, when all relevant scales are not resolved, some of the energy which 
should have been attributed to the smallest scales reappears at the largest scales, 
resulting in a shift in the stability of the numerical problem. This shift can also be 
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observed by looking at the truncation error terms which give rise to the highest 
frequency. These terms are due to diffusion for small Pe;, and to convection for large 
Pe; . When this occurs, the finite difference solution may somewhere violate 
monotonicity and/or boundedness conditions of the continuum problem. The 
standard way of eliminating this behavioral error of wiggles is to reduce the effective 
grid Peclet number, as done by the upwind scheme. It is not necessarily true, 
however, that the resulting oscillation-free solution is more accurate than the one 
containing the oscillations because the amplitude of the oscillations may be small and 
thus may not corrupt the solution. 
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